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One of the important applications of the fluidized bed is as a cooling agent in heat exchangers, Two principal
theoretical explanations are offered for the heat transfer mechanism. The first is based on the idea of multiple
transport of heat from the surface by the solid particles [1-3]; the second on the idea of "bunches" of particles that
replace each other near the wall and are heated in the same way as a porous medium [4-9].

In paper we study heat transfer between a fluidized bed and a surface based on the kinetic model previously
developed in [10—12],

1. Formulation of the problem, We assume that at time t a particle passes out of direct thermal contact with a
surface at a fixed temperature T,,. Moreover, we denote by 8, the coefficient of heat transfer between the particle and
the wall, The amount of heat given up to the particle by the wall in time dt is

dQ;=me;dl; =P (T, —T3) dt . v (1.1)

Here, m is the mass of the particle, ¢; is its specific heat, and T; is its volume-averaged temperature,

If the particle appeared in the zone of direct thermal contact with the cooled surface at time 7<¢t, its
temperature at time ¢t is

T, =T\~ [Ty T, @ exp [— £ ()| (1.2)

We introduce a particle number distribution function (t,x,u, T;) such that the average number of particles in a
volume (x, x + dx) with velocities and temperatures in the intervals (u, u + du) and (T;, Ty + dTy) is equal to ¥dxdudT;.

The function ¥ is related with the Boltzmann distribution function in the usual way:
ft % u) =S ¥ (i, x, u, T;) dT; .
[
For particles that entered the thermal contact zone at time 7, the average temperature rise is

T;° =Ty — [Ty — T (1)>] exp [—,,—‘fz—ia—r)],

(T; (1)) = %SS Ty (v, %, u, T;) dT; du. (1.3)
Q

We denote by P(¢) the probability that a particle will remain in the thermal contact zone for a period of time £.
Then the most probable temperature of the particles that leave the thermal contact zone at time t is

1
@5 =To— | Tom B P exp [ 9] ar. (L.4)

The amount of heat removed by these particles from the thermal contact zone at time t is equal to

Qp* =me; {Tw—— tS [Ty —<T; (1)5] P (t—1)exp [— r—nﬁc% t— 1:)] dr} S (un) fdu, (1.5)

—00 (un)>0

where n is the normal to the cooled surface directed into the bed.
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The amount of heat carried by the particles from the interior of the bed into the thermal contact zone at the same

moment of time ¢t

Qn® = — ma; <T; (1)) S (un) fdu . (1.6)
(un)<o

Now considering that at an impermeable surface

(un) { du - Q (un) f du =0 (L7

(un)>0 (un)<o

for the quantity of heat removed from the thermal contact zone at time t we find

i
g, =mo; {Tw_<Ti @)> — S [Ty —<T; (1)3] P (¢ — 7) exp [—% (t—-r)] dr} X (1.8)
X S (un) fdu,
(un)>0

The quantity q, must be equal to the flow of heat transported by the particles in the fluidized bed, so that in
accordance with the results of {11] we have

f

3me; [ 0 10 <T;
ot () T2 = me{ry— i@ — § e @1 P ¢ exp x

T 8oy \mx
X [~§2— (t——'c)] dr} S (un) f du , (1.9)
* {un)>0
/l — 11/16 ]V
A==~ - vn=N.

Here, o is the particle diameter, 9 is the pseudo temperature [10], vy is the volume per particle, assuming
close packing, and n is the average number of particles per unit volume,

As may be seen from (1.9) the instantaneous heat flow from the cooled surface at time t depends on the entire
prehistory of the process, Only in the steady state, when (T;) does not depend on time, do we have

3mci 6 '/zﬁ(T.Q
~ e () TR = @ — ),

,

h‘=mci {1 —(iop (%) exp <— E:—i) da} S (un) f du, (1.10)

0 (un)>0

2. Steady-state cooling of a vertical surface, We will now examine the characteristics of the steady-state
process of heat transfer between a vertical surface and a fluidized bed.

For simplicity, we assume that the longitudinal extent of the bed is large compared with its thickness, that
there are no macroscopic particle flows in the bed, and that the average velocity of the pseudogas is equal to zero,

The equations of heat transfer in the bed [12] have the following form:

. (9N [O<T 9Ty :
R T+ <%)o<_6‘y'_“ ) e (Tpp —<Tp) =0,

FTEE PR Ty —mna® (KT — <Tw) =0. (2.1)

The coordinate system has been selected so that the x-axis is directed normal to the cooled wall and lies in the
plane of the distributor supporting the bed, while the y~axis is directed vertically upwards,

The effective thermal conductivities Aj and Ay were obtained in {11]; the dependence of the function ¢ on the flow
velocity through the bed, the bed voidage and the thermal conductivities of the particles and the gas is discussed in
[12).
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Since the thermal regime of the bed is assumed steady, all the heat removed from the wall by the particles is
removed from the bed by the gas flow, From the second equation of (2.1) in the general case

piQcs

L~ Pio® (2.2)

where p; is the density of the particle material and L the characteristic scale of flow-particle temperature
equalization,

Taking into account the dependence of ¢ on the above-mentioned flow parameters [12] and denoting by [ the
thickness of the bed, we have

L \i 2R Qs
v, (2.3)

T, Ty (n, R, k) R=
where v is the kinematic viscosity of the gas, w is its thermal diffusivity, k, and ki are the thermal conductivities
of the gas and the particles, ¢ is the particle diameter, and Hy is a quantify proportional to the Nusselt numbers for
particle-flow heat transfer.

In the general case L ~ I, but for slowly heated particles L > I.

Turning now fo the first equation of (2.1), from the heat balance condition we find

%L.~Pfocf5, (2.4)

where 6§ is the characteristic thickness of the layer of heated particles in the vicinity of the cooled wall,
From (2.2) and (2,4) we obtain

&2
S~ <t (2.5)

Since L(8¢/0q), ~ 1, retaining in (2,1) the terms with the greatest order of magnitude, we have
a2 Ty
Mgz - mna® (Tp) —<Tp) =0,
8 (T 3Ty
Ay ay? —P,:ch dy

— mae® ((T'p> — <Typ)=0. (2.6)
The boundary conditions for (2.6) are conditions (1.10) and

T3 Jymo = Ts - 2.7
System (2.6} can easily be solved if L ~ 1. We then represent (Tj) and (T f> in the expanded form:

Tp=00+e® .., Tp=T +6 6P+ ... (2.8)

Substituting (2.8) into (2.6), for the successive approximations we obtain

o o
b gz T ne@ O —00) =0, 0 =Ty, A5+ mncg @ — 6y =0,
92p) 5660
f f
At gy — P1Q¢ gy —mne,@ (8 + 6 — o) =0. (2.9)

The solution of the first equation of (2.9) satisfying boundary condition {1.10) at x = 0 is as follows:
h g mnc;Q\'/
9§°)=TS+W(TW—TS)3 i k::(?»—:) . (2.10)
The equation for the first approximation of the temperature field of the suspending flow is then written in the
form:

mnc @O + hy <5 — pyQcr gy = mre@ oy (T — To) €7, (2.11)
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and the corresponding solution of (2.11) with account for condition (2.7) is

h .
o) =i Tw—T9) e[ — e,
1 : t
S=937 ([(Pvaf)z + 4k mno;p} f— PfQC;} . (2.12)

The equation for the first approximation of the temperature field of the pseudo gas is as follows:

oM h
Mg — mne 08 = — mnc; R Rk (T —Ts) €% (1 — &™), (2.13)

By solving it we can obtain the distribution of the temperature field of the pseudogas. After simple
transformations we obtain

h
ITp =T —l—m (Tp—Ts) (A — e H) 5=
h 1y kR .
<Ti> == Ts +m (Tw -— Ts) e“‘kx -+ n ff‘;vik (Tw _— Ts) (1 - e—sy) zevE + (2. 14)
Yy hikh
+ ("/'ZF—;#C?(TW_ T (L —eH e hoen |

We note that if h> A k = (mncicp?\i)l/z, the maximum rate of heat transfer between components is reached at

ol

1h—M;
”=Th+x:k : (2,15)

3. Heat transfer coefficient, By definition the local coefficient of heat transfer between the bed and the surface
is

Ty — Ty kb [khgL1ah hho
a=h | F=r =t i ) 6.2

We note that its value falls with increase in the distance from the distributor. This result is confirmed by
experiment,

Within the limits of accuracy of the approximation

kX kA 4+ Yo b
Amax = h R F ;CM ' %min = *max ];M Tr (3-2)

Denoting by d the length of the surface cooled by the bed, for the average value of the heat transfer coefficient
a, we obtain

d

oy i Yah k(e

““2?8“(”‘{’/:%“ [ k?;:}-/zh +khi/:—h'( = )]' (3.3)
[}

It follows from (2.12) and (2.3) that s ~ 1/L. For sufficiently slowly heated particles d « L, so that in this case

%= Ymax , (3.4)

As has been pointed out (see [13, 14]), for aluminum particles L ~ 2—4 em. For sand particles, in view of
their much lower thermal conductivity, the values of 1, will be several times greater.

From (3.4) and (1.10) we obtain an expression for o

ki

Op == mnc; w, W S aaseaesemmal
d A T e A

[oe]

A=1—§ P (E) exp [—57“2] dE, wn:< 0 )’ (3.9)

2mx

where 9 is the pseudo temperature [10].
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Using the expression for k from (2.10) and for A; from [11], we can show that with an accuracy sufficient for
practical purposes

kA;
k}"i -+ mnec;wn A =1. (3. 6)
Therefore, finally,

oo

o = mnc; (%n)/ {1 —S P (£) exp [_ %‘E—J dg} . (3.7)

0

In first approximation the parameters g, and P(£) in (3.7) can be determined as follows. Assuming that the heat
transfer between a particle and the wall is realized through an intermediate layer of gas of a certain average thickness
8y, we obtain

ks qg
Bo=57" (3.8)

We also assume that the time spent by a. particle in the zone of direct thermal contact with the wall coincides
with twice its mean free time {the average interval between the collision that propels the particle towards the wall and
the next collision after it strikes the wall), Then

A=~5<—j,—>%, N=no,, P(E):S(?,—%)- (3.9)

Substituting (3.8) and (3.9) into (3.7), we finally obtain

e Y RIS o
uo——mnci<2nm> {1~exp [—W(_e—) ]} (3.10)

An expression for § was obtained in [10]:

_mD 2{ 1 ialnm}z N2 (1 — N)2 Q*
0="3 0T "N T 0 N | U—oNE( — N TGN —N)
o = nc%6v, .

(3.11)

Here, & is the Stokes drag coefficient of the particle calculated for unit mass, and Q is the velocity of the
suspending gas flow in the free cross section of the apparatus.

In the steady state a certain relationship exists between Q and N [15]. If we use in the calculations the relation
for & proposed in [16], then

v — 4.75 .
Qz?f Ay (1 — oN) _8° P (3.12)

184-0.6 [4, (1 — aN)* 81 7 A=vp Pf

The graphs in the figure give the results of calculating o, as a function of Q from formulas (3.10)—(3.12) for
experiments with quartz sand [17}], in which the conditions of validity of the relations obtained were satisfied with
sufficient accuracy. In carrying out the calculations it was assumed that w = 0.6, D = 1072, §, = 0.86. The curves
correspond to the theoretical relations, while the experimental points correspond to the data of {17, 18]. An analysis
of the results obtained indicates that the theoretical results not only lead to good qualitative agreement with experiment
but also give satisfactory quantitative agreement.

At large gas velocities the behavior of the graph of ¢ (kcal/m? - hr - deg) versus Q (m/sec) is also in good
qualitative agreement (see figure) with the known experimental data [18]. In this case the experiments were performed
on glass spheres, whose thermophysical properties differ from the corresponding properties of quartz sand, although
the difference is not very considerable. The experimental points corresponding to this case for particles whose
diameters are close to those used in [17] have been plotted in Fig. 1 in accordance with the data of [18]. The lower
position of the experimental points from [18] in Fig. 1 for particles with similar diameters is associated with the
much greater nonuniformity of the particle distribution over the height of the bed as compared with [17]. The maximum
of o increases with decrease in particle diameter; the curves in the figure correspond to particles with diameters of
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3.15-107%, 4.5 107, and 7.5 - 1072 cm for quartz sand 1, 2, and 3 and 8.5 1072 and 4.5 - 1072 cm for glass spheres
4 and 5,
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